5daofeng•2018-11-16 15:41:59•阅读次数:8078
讲埋点的文章的那么多,我们为什么还要写它?首先,这不是一篇纯技术文章,而是从一个非技术人员的角度,希望通过浅显的语言描述,让大家能快速了解这些技术概念。此外,目前市面上说埋点的文章,要么没有进行系统性的知识梳理,要么不够客观,存在偏向性,而我们则希望让大家透过表象,通过系统的讲解和梳理,从而了解埋点的真正含义。
埋点方式大汇总
▌为什么要专门埋点?
互联网应用(网站、APP)在研发时往往不会专门记录用户身份和行为数据,也不会包含专业的数据分析功能。但有时为了分析用户产生某些动作或不产生某些动作的深层原因,就需要详细的用户数据进行分析。这个时候就需要用到专业的用户分析工具以及埋点了。
数据获取是任何一个数据平台的起始动作。对于互联网应用来说,用户行为的捕捉及获取是重中之重。如果没有准确、全面的用户身份和行为数据作为输入,在后续分析中得到准确洞察的可能性就会存在不确定性,营销闭环也会缺少过程数据依据,精细化运营更难以开展。
▌埋点原理
对基于用户行为的数据平台来说,发生在用户界面的,能获取用户信息的触点就是用户数据的直接来源,而建立这些触点的方式就是埋点。当这些触点获取到用户行为、身份数据后,会通过网络传输到服务器端进行后续的处理。
埋点从准确性角度考虑,分为客户端埋点和服务端埋点。客户端埋点,即客户操作界面中,在客户产生动作时对用户行为进行记录,这些行为只会在客户端发生,不会传输到服务器端;而服务端埋点则通常是在程序和数据库交互的界面进行埋点,这时的埋点会更准确地记录数据的改变,同时也会减小由于网络传输等原因而带来的不确定性风险。
从分析的角度出发,数据越准确、越全面就越能达到理想状态;但在实际生产过程中却不得不考虑数据获取可行性等问题。由于数据分析工具的最终用户可能是企业内部的各种角色,如工程师、产品运营、市场甚至其他业务人员;大家会在不同时间,在产品不同的模块中,以不同的规则向产品中注入自己关心的采集代码。遵循传统方式,常见工作流程如下:
团队内部还会使用一种表格来搜集各个团队的埋点需求,然后再交给工程师。如下图:
实际上,即使是赫赫有名的数据分析服务商Mixpanel,在很长一段时间内也只能将这种工作流程作为它所建议的最佳实践,甚至不得不花篇幅在文档中心提供了几种不同风格的文档,以此帮助大家熟悉这种工作流程。
▌传统埋点的不足
一遍又一遍的迭代,使行为采集及埋点管理这两个动作构成了这个工作流的一个闭环,但这个闭环却存在几个明显的弊端,因此,它们也是现在实际工作中让大家非常苦恼的地方:
人力成本增加,即需要投入对业务和技术都具备一定专业水平的人专门负责
沟通成本增加,即前期需要同多方协作
犯错成本增加,即发现错漏无法快速事后补救